On closed orbits of
reductive algebraic groups

By DOMINGO LUNA

The base field K is algebraically closed and of characteristic zero. We follow the
notation of [1]].

Our goal is to prove the following theorem:

Theorem Let G be a reductive algebraic group that operates morphically on a
smooth affine algebraic variety X. Assume that at every point of X the tangent
space admits a non-degenerate symmetric bilinear form that is invariant under the
isotropy subgroup. Then there exists a dense open subset of X consisting of closed
orbits of X .

The assumption of the theorem are necessary, for example:

For the adjoint action of a reductive group (in this case, the conclusion is well-
known, see [2]]).

ForG = H, and X = H/H,, where H,, H, C H are reductive groups (for more
details, see the end of paragraph 3)).

Corollary 1 Under the hypotheses of the Theorem, there exists a dense open sub-
set of X on which the isotropy subgroup of G is reductive.

In fact, every closed orbit in X is affine, and by a result of Matsushima [3]], its
isotropy subgroup then is reductive.

Corollary 2 Under the hypotheses of the Theorem, every open orbit is closed.

1 KEtale slices

Let G be a reductive group that operates on an affine variety X. Let x € X.
Let G, denote the isotropy subgroup in G at x and G(x) the orbit of G passing
through x. We assume that G is reductive (if G is reductive, this amounts to the
assumption that G(x) is affine [3]). We denote by K[X] the algebra of regular
functions on X.

Lemma 1 If X is smooth at x, then there exists a morphism ¢ : X — T, X of
varieties with the following properties:



(1) ¢ commutes with the action of G,
(2) ¢ is étale at x,
(3) ¢(x) =0.

PROOF: Let m denote the maximal ideal of K[X] that corresponds to the point
x. The canonical map d : m — m/m? = (T, X)* commutes with the action of
Gx. As G, operates completely reducibly on K[X] ([S, Chapter 1, §1]), we can
find a G-submodule W of m such that d : W — (T, X)* is an isomorphism.
Prolong (d|w)~! in a canonical way to a homomorphism from the symmetric
algebra of (Tx X)* to K[X]. One easily verifies that the corresponding morphism
¢ : X — T, X satisfies the requirements of the lemma. <&

Set Y = ¢~ !(N). This is a closed subvariety of X containing x, smooth at x,
invariant by G, and such that T,Y = N. The group G, acts on G x Y by
s(t,y) = (ts7',5y), and hence also on K[G x Y]. As G, is reductive, it acts
completely reducibly on K[G x Y], from which we deduce that the algebra of
invariants K[G x Y]« is of finite type over K, see [5]. Let G xXg, Y be the
affine variety defined by K[G xg, Y] = K[G x Y]%*. We verfiy that G xg, Y
is the fibration associated with the G-principal fibration G/ G, and fiber of type
Y. Denote by e the identity element of G and by (e, x) the image of the point
(e,x) € G xY in G xXg, Y. Since X is smooth at x, G Xg, Y is smooth at
(e, x). The action of G on G x Y given by s(¢, y) = (st, y) descends to an action
of G on G X, Y. The morphism G x X — X that defines the G-action on X,
induces a morphism G xg, ¥ — X which commutes with the G-action. Since
TyG(x) + TyY = T, X and since G X, Y and X have the same dimension,
G Xg, Y — X is étale at the point (e,x). Let V. = V(p, N) denote the largest
open subset of ¥ suchthat¢ : V. — N and G xg, V — X are étale. Let
U = U(gp, N) denote the image of G X, V in X this is an open subset that is
stable by G and contains x.

2 Closed orbits

Let G be an algebraic group which acts on an algebraic variety X. We say that
almost all orbits of G in X are closed if there exists on open dense subset of X
consisting of closed orbits (in X'). This notion has already been studied in several
ways (see [8]).

The function which associates to a point x € X the dimension of the orbit passing
through x is lower-semicontinuous (see [S, p. 7]). We denote by A = A(X)
the set of points in X where it is not locally constant. We further denote by
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B = B(X) the set of points in X through which passes an orbit whose closure
intersects A. If G is reductive and X affine, then B is closed (we can the easily
see that B is the common zero set of the invariants in K[X] that are zero on A). In
general, this is not true. For example, if G = K™ acts by ((1) 2) on K?\{0}, then
B = K?\({0} x K).

Lemma 2 For almost every orbit of G on X to be closed, it is necessary and
sufficient that the closure of B has empty interior.

PROOF: Let T be an orbit in X. It is well-known that T\7 consists of orbits
of dimension strictly less than that of T ([, p. 98]). It follows that T\T C
A. From this it follows that the closed orbits in X complementary to A in X
are precisely the orbits complementary to B in X. Hence the condition of the
lemma is sufficient. As the closed set A has empty interior, we find that it is also
necessary. <&

Lemma 3 Let G be an algebraic group that acts on two varieties X and Y, and
lety : X — Y be a G-equivariant étale morphism.

(1) If almost every orbit in Y is closed, then almost every orbit in X is closed
as well.

(2) If is also surjective, the converse in (1) is true.

PROOF: As ¢ is étale, the inverse image of every closed orbit in Y is a finite
union of closed orbits in X. From this, (1) follows immediately.

If ¢ is also surjective, we show first that B(Y) C ¥ (B(X)): Let Y be an orbit in
B(Y). The closure of T then contains a point y € A(Y). Let x € ¥~ 1(y). As
Y is étale, we see that x € A(X). Let T1,..., T, denote the different orbits in
Y~ 1(T). If there exists a neighborhood V of x that does not intersect any of the
T;, the ¥ (V') is a neighborhood of y that does not intersect 7', but this is absurd.
Therefore, at least one of the 7; contains x in its closure, and thus is contained in
B(X). It follows that T C ¥ (B(X)).

Assume now that almost every orbit in X is closed. The closure of B(X) then
has empty interior (Lemma . It is the same for ¥ (B(X)) and ¥ (B(X)) (as ¥ is
étale and ¥ (B (X)) is contructible, [6, p. 97]). Consequently, the closure of B(Y),
which is contained in W(m), also has empty interior. By virtue of Lemma
we conclude the second assertion of the lemma. &

Return to the notations and hypothese of the previous paragraph. Let (¢, N) be
an étale sliceat x € X, andlet V = V(p, N) and U = U(p, N) be the open sets
inY = ¢ 1(N) and X that were introduced there.
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Lemma 4 If almost every orbit of G, in N is closed, then almost every orbit of
G in U is also closed.

PROOF: The orbits of G in G X, V are of the form G xg, T, where T is an
orbit of G, in V;and G xg, T isclosed in G X, V if and only if T is closed in
V. The lemma now follows immediately from Lemma 3] <&

3 Orthogonalizable varieties

Let G be an algebraic group that acts on an algebraic variety X. We say that X
is (G-)orthogonalizable if at every point in X, the tangent space admits a non-
degenerate symmetric bilinear form that is invariant under the isotropy subgroup.
If X is a G-module (that is, a vector space over K of finite dimension with a linear
G-action), it is orthogonalizable if and only if it has a G-invariant non-degenerate
symmetric bilinear form.

Lemma 5 Suppose G is reductive and let M be a G-module and N a G -submodule
of M. It M and N art orthogonalizable, then M/ N is orthogonalizable as well.

PROOF: (following [7, p. 144]) Let L be a G-invariant complement of N in
M. We choose a G-invariant non-degenerate symmetric bilinear form (-, -); on
M, and one on N which we complete by 0 on L to a degenerate (unless L = 0)
G-invariant symmetric bilinear form (-, -), on M. On the “line” passing through
(-,+)1 and (-, -), we can find a form (-, -) that is non-degenerate on M and on N.
The restriction of (-, -) to the orthogonal space of N (with respect to (-, -)) is then
also non-degenerate, and this G-module is isomorphic to M/ N . <&

We now fill in the details for the example in the introduction. Let H be a reductive
group with Lie algebra ). The group H acts on §) by the adjoint representation.
It is well-nown that ) is H -orthogonalizable. Let H; be a reductive subgroup of
H with Lie algebra §); C ). The homogeneous space H/H; is an open affine
variety [3]]. The isotropy group of H at the point e, is H;, the tangent space
at of H/H, at the point eH; can be identified with the H;-module b/f;. By
Lemma |5, /b, is H;-orthogonalizable. It then follows that H/H, is H- and
hence H,-orthogonalizable for all subgroups H, of H.

4 Proof of the theorem

The proof is by induction on dim X . If the dimension is O, then there is nothing to
prove.



Suppose now that dim X > 0 and that the statement holds for all reductive groups
acting on an orthogonalizable open affine variety of dimension less than dim X'.

Choose successively (i = 1,2,...) points x; € X whose isotropy subgroups are
reductive, and, at every point x;, an étale slice (¢;, N;), by the following proce-
dure: Given the points and their étale slices for i < j, take x; in the complement
of the union of the U; = U(g;, N;) in such a way that the orbit G(x;) is closed
(so that G(x;) is affine and hence G, reductive [3]]). As the topological space X
is Noetherian, this constructions stops after a finite number of steps, when the U;
cover X.

By Lemma |5, the N; are orthogonalizable, for Ty, X and Ty, G(x;) = g/gx,
are (we denote by g and gy, the Lie algebras of G and G,;). Choose a Gy;-
invariant non-degenerate symmetric bilinear form on N;. The “spheres” of non-
null rays with origin in N; are then G, -invariant smooth affine varieties, Gy;-
orthogonalizable and of dimension less than dim X. By the induction hypthesis,
almost all of their orbits are closed. It then follows immediately that almost all
orbits of Gy, in N; are closed. By Lemma this is the same as almost all orbits
of G in U; being closed.

Denote by U the disjoint union of the U;. The inclusion of U; in X defines a
surjective étale morphism U — X that commutes with the G-action. It is clear
that almost all orbits in U are closed. By Lemma [3] this is the same as almost all
orbits in X being closed. <&
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